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1. INTRODUCTION

Recently, a number of papers have discussed ferromagnetic and anti-
ferromagnetic phases of ionic solids containing a rare earthlelement as
one of the major constituents.!"* In one of these papers,! a second
rare earth is intentionally substituted in a small percentage to be used
as a probe to investigate the internal fields in these solids at temper-
atures below the phase transition. The data were analyzed on the
assumption of an effective magnetic field inside the sample. It was
found that no single value of the effective field could be chosen to fit
the Zeeman splitting observed on the substituted impurity ion.

In some of the papers, the experimental data were interpreted in
terms of an effective magnetic field derived from a sum of the magnetic
dipoles taken over the lattice. We show that these terms are only the
lowest order of a particular multipolar expansion caused by the inclu-
sion of the finite extent of the 4f electrons of the rare earth ions.

In this report, we first derive a convenient form for the
interaction Hamiltonian of an orbital electron in the presence of a
remote dipole and then cast this interaction into irreducible tensor
form. The single-electron matrix elements are calculated, and the
results are used to cast the interaction into unit spherical tensor form
for the N electron configuration (nt)N. The coefficients of the unit
spherical tensors are shown to be particular 1lattice sums intimately
related to those obtained in the point charge model of Stark splitting
of ions in a crystal.

2. FUNDAMENTAL INTERACTION
2.1 Magnetic Dipole Field

We are concerned here with the effect of an inhomogeneous mag-
netic field due to external dipoles on the energy levels of a paramag-
netic ion. Thus, we are led to consider the fundamental interaction
between an electron and an inhomogeneous magnetic field. In this

;?poyt, the sources of the inhomogeneous field may be considered pure
poles.

Tponald Jean Randazzo, PhD Thesis, Johns  Hopkins University,
Baltimore, MD (1966) (University Microfilms, Ann Arbor, MI,
No. 66-12,514).

2p. J. Becker, M. J. M. Leask, and R. N. Tyte, J. Phys. C, 5 (1972),,
2027.

37. C. Wright and H. W. Moos, Phys. Lett., 29A (1969), 495.

“H. G. Kahle, L. Klein, G. Miiller-Voght, and H. C. Schopper, Phys.
Status Solidi (b), 44 (1971), 619.
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The magnetic, field at the point ¥ due to a dipole of moment ﬁ
situated at the point R is given by$

+

)1 (R - 7) M
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R - v
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It is well known that the magnetic vector potential corresponding to
such a field is given byS

>

Po Mx(R-1) (2)
Bl

This vector potential may be written in the form*

A= - [Mxgrad o(r)], (3)
where
Fig B e Sy (4)
R = r|

Equation (4) may be expanded in spherical tensors:

k
e r + ~ ~
¢(r) © kgq Eﬁ.‘f ckq (R) ckq (Y‘), (5)

qu(f‘) = \"z-k—zl— qu(F‘) (6)

and where Yiq fis the ordinary spherical harmonic.®

where

Sw. X. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, Addison Wesley, Reading, MA (1955), 127-128.

6M. E. Rose, Elementary Theory of Angular Momentum, John Wiley and
Sons, Inc., New York (1957).

*Here and in what follows, we use the notations "grad," "curl," etc.,
to represent an operator acting on only the function directly on the
right of the operator, whereas the operator "V" acts on everything to
the right. For example,

76 = (grad ¢) + ¢v.
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Here the problem 1is to determine the interaction between a
paramagnetic ion and a lattice of dipoles. Thus, we must sum the fields
of equation (1) over all dipoles in the lattice. Here, we make our most
crucial assumption: that the moments of all the paramagnetic ions in
the lattice are equal; we allow for the possibility that the signs might
vary, to allow for an antiferromagnetic lattice. With this assumption,
w$ ma{ use equation (3) for the vector potential, where ¢(¥) 1is now
given by

oF) = 1 N g () ok, (7)

Pi :

N T

(8)

kq paramagnetic (Ri

ions

and where the factor (-)P1 is considered to take account of the varia-
tion in sign of the dipoles. The quantities Nkq are called the magnetic
crystal field parameters, by analogy with similar quantities which occur
in considering the interaction of jons with the inhomogeneous electric
field of crystal lattices.’

2.2 Correct Expression for Interaction

The expression for the interaction between an electron and a
magnetic field is®

H=e(*.K+K.+)+-e-E(V-cur‘l ;) (9)
M 2m P P/ % mc ;

If into equation (9) we substitute equation (3) for the vector poten-
tial, taking account of the fact that the divergence of A is zero, we
find that

’N. Karayianis and C. A. Morrison, Rare Earth Ion-Host Interactions
l. Point Charge Lattice Sum in Scheelites, Harry Diamond Laboratories
TR-1648 (October 1973). 3

8L. I. Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill Book Co., New
York (1968), 478.
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Hy = 2ug [iM - (grad ¢(r) x V) + (M - grad) (s - grad ¢(r))]1. (10)

M

In equation (10), ug = efi/2mc, and M is the dipole moment of an external
d:pole. The quantity § is the spin angular momentum operator of the
electron.

We now cast equation (10) into irreducible tensor form.6

3. IRREDUCIBLE TENSOR FORM OF Hy

We shall not consider the full dinteraction Hamiltonian of
equation (10), but rather we shall break it into portions according to
the decomposition of equation (7). Thus, equation (10) becomes

.'.

M = ) N, (11)

M Ksq kg 'kq
where

S -> > >
Heq = 248 [iM - (grad brq * v) + (M - grad)(s - grad ¢kq)] (12)

and where K i

¢kq = p qu (r) . (13)

We now cast equation (12) into dirreducible tensor form. Usin
gquation (A-26) (app A), we find that the second term of equation (12?
ecomes

3 > - utv
Hkq(sp1n) = 2up yo(-) M_us_v(grad)u (grad) *kq

HsV

2ug [k(k - 1) (2 - 1) (2k - 3)]% k-2

x

Y <k-2(qtu+v)1(-u)|k-1(g+v)><k-1(q+v)1(-v)|k(q)>
HsV
X ck-?,q+u+\) M’]J S_v . (]4)

6M. E. Rose, Elementary Theory of Angular Momentum, John Wiley and
Sons, Inc., New York (1957).




It is convenient to recast equation (14) into a form which reflects
explicitly that it is a tensor of rank (k-1) in the total angular momen-
tum space of the electron. It may be recast by recoupling its Clebsch-
Gordan (C-G) coefficients in equation (14) according to equation (A-13)

(app A):
<k-2 (qtu+v)1(-u)[k-1(q+v)><k-1(q+v)1(-v)|k(q)>

= (2k-1) W(1 k-2 k 1; k-1 k-1)

x <k=-2(qtu+v)1(-v)|k-1(q+u)><k-1(g+u)1(-u) [k(q)> . (15)
But
M1 k-2 k13 k-1k-1) =5, (16)

Therefore, we may rewrite equation (14) as
TRGEITR L
Hkq(sp1n) Hkq
= 2up [k(k - 1) (2k - 1) (2 - 3)]% rk°2

x ) <k-2(qtu+v)1(-v)|k-1(q+u)><k-1(q+u)1(-u)|k(q)>

HyV

x ck-Z,q+u+v S_v M_u . (17)

Now the first term in equation (12) is considerably more difficult
to reduce. We may write

Hkq(orb'it) = 23/2 ™ ) {«]® M'u <1(v)1(u-v)|1(u)>

MV

x (grad ¢kq)v vu

-V

g3
= 2 L) ugv (‘)“ Mu <1(\))1(u-\))[1(u)>(grad ¢kq)\)
O T BT TS TS

9
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Using the gradient formula equation (A-26) (app A) in equation (18),
we find, using equation (13) for (grad ¢k0)v.

3/

Heglorbit) = 2 *(2k#1)<1(0) K(0) [k-1(0)>g T (-1)* M

HsV

x <1(v) 1(u-v)|1(n)> <1(v) k(q)|k-1(g+v)>

k-1 3
X ck-l.q+v cl.u-v r o~ = 4(2k+1)<1(0)k(0) |k-1(0)> Mg

% F a1 M_, <1O)1(u-v) [1(u)><1(v)k(q) [k-1(q+v)>
HsVsA
X <1(A}1(u-v-x)|1(u-v}>Ck_1’q+v Cix Lhmvmn P (39)

Thus, the orbit part of the interaction divides into two parts; we shall
consider each part separately.

The first term in the interaction is
H,$2) = 2¥2 (oK + 1)<1(0)k(0)]k-1(0) u
kq ug * [k- > ) (-) M-u

HsV

X

<1(v)1(u-v) 1(u)><1(v)k(q) |k-1(qsv)> rK-1

9
*Cratigre v (20)

i ug (2k + 1)<1(0) k(0)[k-1(0)>

X

E| <k-1(0)1(0) k' (0)> J ()" M_

HsV

x

<I(v)1(u=-v)1(u)><1(v)k(q) [k-1(q+v)>

k-1

* <k-1(q+9)1(u=v) [K'(@4u)> Cpo oy P 35 (21)

10
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By recoupling the last two coefficients and summing over v, we obtain
£2) . o 1 &
Hkq 2ug [6 (2k - 1,.% (2k + 1)<1(0) k(0)|k-1(0)>

x <k=1(0)1(0)|k(0)>W(kl k1; 1k-1)rk'lz<k(q+u)1(-u)|k(q)>
M
%Gy i (22)

Now when we evaluate the C-G and Racah toefficients of equation (22), we
find

M) = 2u Tk(ke1) % 1 T ckian) 10w k(D> € gy M,
]

w3 - (23)

We now come to the third term in the Hamiltonian, the second term in
equation (19). This may be written as

H ) o (2K + DK 2a(0)k(0) [k-1(0)> T (<)*M_ <1(v)1(u=v) [1(u)>
kq B HsVsA .

x <1(u)k(Q) [k-1(q#+v)><1(A)1(u=v-2) |1u=v)> Cp g o0 €0 oy

=-4uB(2k+1)<1(0)k(0)|k-1(0)>rk'2 £'<k-1(0)l(0)|k'(0)>

% <1(v=A)1(u=v#2) | 1(u)><1(v=-1)k(q) |k-1(g+v-1)>

x <1(A)1(u-v)|1(n=-v+r)><k-1(q+v-1)1(r) | k' (q+v)>

xChgibumy ()M (24)

We may recouple the first two C-G coefficients and then the Tlast two
and, finally, sum over A to obtain

M (3) = 120 [k(2k-1) TErK-2 ] (=) K"K L2k +1) (2k"+1) 7
kq B k',K" .

« W11 k=Tk'sk")W(1 1 k-1 k'; 1k") <k"(q+u)1(-u)|k(q)>
<k'(q+v)1(u=v) k" (q+u)><k-1(0)1(0) [k' (0)>

x

x (25)

sq+y Zu-vM-u g

11
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We now repeat the expression for Hkq in irreducible tensor form:

s udih eyt . B)

Hkq kq kq kq (26)

where
Hkél) = 2uglk(k-1)(2k-1)(2k-3)]* rk’zuzv<k-2(q+u+v)1(-v)|k-l(q+u)>

x <k-1(q+u)1('U)|k(Q)> Ck‘Z’q+U+V S'\) M_u Y (27)
HkéZ) = zuB[k(k+1)]15 rk-1 g <k(gtu)1(-u)[k(a)> €y p M 3% ’ (28)
w63 125 [ (k(2k-1)T rK-2 ) (-)K K" L2k 1) (2k"+1) T
kq B k', k"

< W(1 1 k-1k; 1K")W(1 1 k-1k'; 1k")<k-1(0)1(0)[k'(0)>

x ] <k'(q+v)1{u-v) | k" (q+u)><k"(q+u)1(-u) | k(q)>

HsyV
xM_, Cerqio Gumy: (29)

4. SINGLE ELECTRON MATRIX ELEMENTS

We consider matrix elements of the operators of equations (27) to
(29) between wave functions of the form

R ,(r) -
|n£m£5m5> = nﬁ Yzmz(eri ¢r) X(ms) (30)
with
xf(mls) X(ms) = 5m e (3])

S
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First of all, we note that, if n=n' and 2=¢', the matrix elements of
equation (28) may be integrated by parts over the radial variable to
obtain

M) = gk + 1) [k(k + 1)]5(rk'?)§ <k(q+u)1(-u)|k(q)>

A0 W (32)

Thus, accordini to the Wigner-Eckart theorem, we obtain for the matrix
elements of H, 2

kq
% k-2
<em,'s m;lHkgz)llmz sm> = -ug (k + 1)[k(k + 1)]°% <r" “> cmsm;
<L||C 1> ] M_ <k(q+u)1(-u}|k(q)><&(m,)k(a + u)[&(m,")>, (33)
u
where
ks = fm dr rkIR (r)|2 (34)
0 nl :
The quantity <z(lckliz> is the reduced matrix element of qu (app B).
The matrix elements of Hkg3) are
: k e
<tmy's m* [H,$3) Lemys m> = ~12g[k(2k-1)T2%<rk %> 6m m:

I (-)K " Le(er) (2K 1) (2k"41) Tt €, | 1£> <k=1(0)1(0) [ k' (0)>
l’kll

X

W(1 1 k-1k 31k") W(1 1 k-1k'; 1k") J <k'(g+v)1(u-v)|k"(q+u)>

HyV

X

X

<k"(q+u)1(-u) [k(a)> <€(m,)1(u-v) [ £(mp+u-v)>

x

<£(mpru-v) Kk'(qv)[e(m,')>, (35)

13




We may recouple® the last two C-G coefficients of equation (34) and sum
on v to obtain

am,'s mslHkga)MmI_s m> = 12ug[k(2k-1)2(2+1) (2+1) Perk~2

B i T (2k"+1)/(2k™+1)<k-1(0)1(0)|k'(0)>

s's k',k"

x W(L1Lk';2k"IW(1 1 k-1k 31K")W(1 1 k-1k's 1k")<e||C,'||&>
x ] M_ <(mp)k"(qtu) [2(m,')><k" (q+u)1(-u) |k(q)>. (36)
u

To determine the behavior of equation (35), we must examine each
term separately. The quantity of interest in our analysis is

t(k,k',k") = (2k“+1)[k(2k-1)(2k'+1)£(£+1)(2£+1)]%<k-1(0)1(0)|k'(0)>

x W(L1ek';£k")W(1 1 k~-1ks; 1k")W(1 1 k-lk';lk“)<£||Ck||£>.(37)

.By evaluating explicitly the quantities occurring in equation (37)

according to equation (A-17) (app A),

t(ks ks K) = L (k + 1) RTEFIT <2flC | 18> (38)

- L ; %
t(k, k, k-1) = - ("12 1) l_k(u - '{2": })S‘"— +k + 1)] <2lIc l1e>, (39)

%
tko k-2, k-1) = - % E‘(” —(§k+_1%§2£-+ Rt 1):|l <2||c,1&> , (40)

where we have used the equation.

[ %
ok lze s ke aMoe < ke
L} 16zl 16> = - tgzy) l_%zz S RUA TS ):ll s ke

6M. E. Rose, Elementary Theory of Angular Momentum, John Wiley and
Sons, Inc., New York (1957).
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Therefore, the total of equation (36) is

k-
<tm,'sm; |H lzm£ sme> = ug(k+1) /K(KFIT <r msm; <e||c,|le>

) M_u<z(mz)k(q+u)|z(m;)><k(q+u)1(-u)Ik(Q)>
M
~ug[k(2k-1) (22-k+1) (28+k+1) % <rk'2>smsm; <2|[C, (2>

x [ M_ <&(my)k-1(q+u)|&(m,")><k-1(q+u)1(-u) [k(q)>. (42)
u

The first term of equation (42) cancels equation (33) exactly, and
therefore we have

<tmp's mg' [H (2)+Hk(3)|£m s m> = - uplk(2k-1)(2e-k+1)(2£+k+1)]*

kq
k-2 :
e <£||C I|£>Z M_ <t(m /k-l(q+u)|2(m£ )>
S'S
x <k-1(q+u)1(-u)|k(q)> - (43)

Finally, for the spin part, we have 5

amg's mg 114 mgsne> = 2uglk(-1)(26-1) (2315 (541 et [0,y 105

x > I M_ <k-2(qtu+v)1(-v) |k-1(q*u)> <k-1(q+u)1(-u) | k(q)>

HeV

x <£(my)k-2(q+u+v) [£(m,")><s(m ) 1(=v)[s(mg)> . (44) ‘

5. MATRIX ELEMENTS FOR EQUIVALENT ELECTRONS

We now consider the problem of N electrons, each with orbital
angular momentum £. We 1introduce the unit tensors® uk and v}k. which
are defined such that 9 q

9G. Racah, Phys. Rev., 62 (1942), 438.

15




<'s | [uk] s> = 5y, 8! (45)

and

@'s' [V 1es> = 5, 5" . (46)
4L "ss

The quantity uk is a tensor of rank k in orbital space; v'Ik is a double

tensor of rank k in orbital space and wrank 1 in spin space. We may

:zite the Hamiltonian equations (27) to (29) 1in a form using the unit
nsors:

o) = 2uglk(2ke1) (2K-3) (k-1)s(5+1) ot 1€,y [£<rK 2>
1,k-2
i u?vM'”v'v.q+u+v<k‘2(Q+u+v)1(-v)|k-1(q+u)>

x <k-1(q+u)1(-u) |k(q)>> (47)

Hkgz° = -uB[k(zk-l)(2z-k+1)(2z+k+1)]*<£|ICkII£><rk'z>
DLW ugpy<k-1(ar) 10-u) [ k(a)> (48)

with

Hq = Hkél) + Hkgzq : (49)

When we go over to N equivalent electrons, we sum the one-electron
Hamiltonian equation (49) over all N electrons. We define the unit
tensors for N electrons as the sum over all the one-electron tensors:

N
k k

Ug = u (1), (50)
q 121 q

yioo ¥k (51)
q " b Y\q (1),

< i Nl ma N,
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Therefore the Hamiltonian for N equivalent electrons becomes
Lol (2')
Hig(N) = ™ + Hea® 7 (52)
where

2ug [k(k-l)(2k-1)(2k-3)s(s+1)]*<g||ck_2||z><rk'2>

p= =
——~
—
N
]

1,k-2
ug\) M'Uv'v »Qtuty <k-2(q+u+v)1(-v) [k-1(a+u)>

x <k-1(q+u)1(-u)|k(q)> (53)

x

and where

Hkgz') = g [k(2k-1)(20-ke1) (28+ke1) Tct| G, | [ £ er 2>

<k-1(q+u)1(-u)|k(q)>. (54)

k-1
DL

When matrix elements are taken of equations (54) and (53), they are
expressed in terms of the C-G coefficients and reduced matrix elements
of the unit tensors. In particular, in a basis |JMLS>, where L is the
total or%ita} angular momentum, S is the total spin angular momentum,
and T =L + S, we have

<a'o‘M'L's'|Hkg‘)|aJMLS> - zuB[k(k-l)(2k-1)(2k-3)s(s+1)]*<£|Ick-2i|£>

v <k 2carirs [ [VE K2 | |aLs> [ (25+1)(28"+1) (2L "+1) (2k-1)T?

x X(SLJ; S'L'9'; 1 k-2 k-1)§ <k=1(q+u)1(-u) |k(q)>

x <J(M)k-1(g#u) ' (M')> M_, : (55)

for the spin part of the interaction and




e

<a'J'M'L'S'IHkéz')!aSMLS> = -uglk(2k-1) (2£-k+1) (2L+k+1)]* <e||c,|le>

x <k arLts | UK JaLs> [(2L141) (2041) 1% 6gg, W(k-1 L'3 S35 L 0")

x ] <k-1(q+u)(-u)|k(Q)><J(M)k-1(q+u)IJ'(M')>M_u . (56)
i

The quantities a and o' in equations (55) and (56) are additional quan-
tum numbers necessary to uniquely didentify the states. The quantity
X(abc;def;ghi) is the X-coefficient and is didentical to a 9-J symbol.
The manipuIations necessary for the results in equations (55? and (56)
are given in  appendix B.  The quantities <a'L'S'||UK-1||oLS> and
<a'L'S'||V1.k2 | |aLS> are reduced matrix elements of the unit tensors in
the Russell-Saunders basis and are tabulated extensively.l0

6. OPERATOR EQUIVALENT FOR LOWEST TERM

We now consider the k = 2 part of the Hamiltonian equations (47) and
(48). Substituting the explicit form

1%
<2||Ca 12> = <€(0)2(0) [£(0)> = - [2@?1 = R
the Hamiltonian becomes

Haq = vg 7B I M., (Ly, + 25., ) <l(an)i(-w)[2(a)> . (58)
M

2q ~ q+u q

10c. w. Nielson and George F. Koster, Spectroscopic Coefficients for
the p?, dP, and £ Configurations, The MIT Press, Cambridge, MA (1963).
The relations between the reduced matrix elements used in that book and
in our report are

<a'z's'||0F| |azs> -[" - 11] (a'L's'l ||| azs)

2L +
and
Ak 2 28 + 1 s cetar] ik )
<art's'| || |azs> = 7= [}2L, I 1)] (a L's'||v"]||aLs).
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k We now prove that this equation fis identical to the usual
: Hamiltonian for a constant magnetic field:

H=ug (£+25) « H. (59)

We consider a single term,

L k
¢kCI 2 ckq ¥ ’ (60)

and calculate the field according to equation (3):

c-
n

L= - [x(ibde)] = 2 ] <1(v)1(u=v) [ 1(1)><1(A) 1 (u=v-2) | 1(u=v)>
VA

M.V ¥ r2=30Mq+u<1(0)2(0)|1(0)><1(0)1(0)|0(0)>

AV u-v-ACZ

x

q

§ <1(v)1(u=v) [1(n)><1(g+u)1(-q-v) | 1(u-v)><1(-q-v)2(a) [1(-v)>

<1(v)1(-v)|0(0)> . (61)

If we recouple the first two C-G coefficients and explicitly evaluate
them with j = 0, we arrive at the result

X

x

Hyo= ()Y /B M, <llaw)1(-u)2(a)> (62)

This result, when substituted in equation (59), gives
& _\H
H IJB E ( ) H"U (‘eu + ZSU) ’ (63)
which was to be proved.

7. DISCUSSION OF RESULTS

In view of the results of section 6, it is convenient to write the
Hamiltonian as the sum of two terms:

g (L2288 Hpe® I W' (64)

H
k>4 q kg "k

q’
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where Hkq is given by equation (52) and the magnetic crystal field
parameters, Nkq, are given by equation (8). The quantity Hegs 1s
related to the twofold parameters qu.

Considering a ferromagnetic below its Curie point, we may assume
that all the dipoles 1in the lattice are equal and pointing along the
same direction. In particular, we assume a lattice whose point group
symmetry is S,; thus, the only nonzero magnetic crystal field parameters
are Nyo, Nyg» Ngo» Nyys and Ng,. We assume the field points along the
z-direction. If the material is insulating and there are several inert
atoms between the paramagnetic ions, we may neglect the exchange inter-
action and assume that there is a pure dipole interaction. Under these
conditions, we may assume the form of equation (64) for the Hamiltonian.

We consider the zero-field splitting of doublets by the Hamiltonian
equation (64). Usually only the first term of equation (64) is taken
into account; that is, it is assumed that the splitting of doublets in a
ferromagnetic material is due to an effective magnetic field Heff.
However, experimentally it has been shown that a single effective field
could not account for all the splittings observed (say, by optical
methods or excited state electron paramagnetic resonance--EPR). The
splittings can be accounted for if all the terms of equation (64) are
considered. These terms represent the effect of the inhomogeneity of
the magnetic field near the paramagnetic ion.

In conclusion, we have investigated the effect of a lattice of
external dipoles on the energy levels of a paramagnetic ion. Considera-
tion of such an effect may be represented by an effective Hamiltonian
which is the sum of two terms; the first term representts the effects of
a constant field, and the second term represents the effects of the
inhomogeneity of the field. No attempt has been made to investigate
fully the consequences of the Hamiltonian equation (64) for this report.
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APPENDIX A.--CLEBSCH-GORDAN COEFFICIENTS AND RACAH COEFFICIENTS
A-1. CLEBSCH-GORDAN COEFFICIENTS

The Clebsch-Gordan (C-G) coefficients are defined through the
relation

[J132m> = z <j1(m1)j2(m2)'j(m)>|j1m1j2m2> ’ (A-1)
L

whic?,describes the coupling of two angular momenta 3, and 35 to form a
sum The C-G coefficient,

<j1(my)iz(my) | 3(m)>

is zero unless my + mp, = m and unless |j; - Ja| <3 < |3, + 32|. The sum
jy + j, + j must be an integer.

Certain symmetry equations relate different C-G coefficients:

AERAPESN]
<j1(m1)j2(m2)|j(m)> = (-) <j2(m2)j1(m1)|j(m)> (A-2)

o P em) w3 () (A-3)

Ji1-m g
(=) [2.];11] <j1(m1)j("m)|j2('mz) (A-4)

Jo+m
(7 ] atematm) i m)> o (AS)

A-2. RACAH COEFFICIENTS

In the coupling of three angular momenta, we consider two coupling
schemes :

Scheme A: 31 + 32 = 312’ 312 + -53 b 3’ (A-G)
H i

Scheme B: J + 3, =3, S5+ 3,=3 . (A-7)
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Coupling scheme A is represented by the wave function

Ao = ]

<j1(m1)j2(m2)|j12(m1+m2)><j12(m1+m2)j3(mg)|j(m)>
mymoms

x |Jim,Jompjams> (A-8)

and scheme B by the wave function

L)

<j1(ml)j3(m3)ljl3(m1+m3)><j13(m1+m3)j2(m2)]j(m)>
mmom3

X |j1m1j2m2j3m3>. (A-g)

The coupling schemes A and B are connected by a unitary transformation
[B> = Z <A|B> |A>, (A-10)

and the coefficients of the unitary transformation are determined by
taking the inner product of equation (A-8) with equation (A-9)

We define the Racah coefficients as follows:

PR L ST SR TG o 1
w(Jl J12 J]_3 33; Jl J) s [ j12 + 1 (2j13 + 1)]15<AlB>_ (A‘]])
Thus,

[(251, + 1(2315 + DIF W3, 3,5 31s 353 3, 3)

=) <du(my)dz(my) [3r2(mytmy)><dq,(my+my) s (m-my-my) | §(m)>
mym;

x <j1(m1)j3(m-m,-m2)lj13(m-m2)><j13(m-m2)j2(mz)|j(m)>. (A-12)

The following equation can be obtained from equation (A-12):
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A D

<jo(my)dy(my)[J12(my+my)><jyo(my+my) iz (m-m;-my)]|j(m)>

= § [(2j12+1)(2j13+1)]%W(j2j1j Jas J12d13)
13

x <j1(ml)j3(m-m1-m2)IJ13(m-m2)><J2(m2)j13(m-m2)IJ(m)> ’ (A-13)
which is a relationship used often in the main body of the report.

The Racah coefficient is related to the symmetrized "6j" symbol by
the following equation:

+b+c+ b
W(abcd; ef) = (-)2 hie 14 g 4 : (A-14)

Certain symmetry relations exist for the "6j" symbols:

J J J J J J J 2
1 ~2 2 X1 1 J2 J

and all combinations of the relations in equation (A-11). The four

triads (J, 3o Js3)» (3; 22 23)s (27 3o 23), and (2; 2, j3) must be able to
form a tr*angle. That is,

Ij]_ 'jzl f_J3 ijl+j2 s (A-]G)

with similar relations for the other triads. An explicit formula for the
"6j" symbol is

{z L, e} [4(313.33)8(31£.23)8(£13283) (L1235 )7

x J (41 (t +1)!
t (t=d =dp=dg)t(tej, ~Ly=L,) 1 {t-2,=j,~L ] 1(t-2 -2;,~],)!

1
" GO 3 3+ L - (3 v -t @ (A7)
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which is used in the main body of the report to evaluate explicitly
certain "6j" symbols and Racah coefficients. In the above, t ranges over
all values for which the arguments of the factorials are nonnegative
integers. The quantity a(abc) is

a(abc) = e rh- C)éa(i B E : 5liy§'a tbro)l . (A-18)

Another relation which is used in the text is

at+b+c+d+et+f+g+j+h+x abx) fcdx) fefx\ _ Jghjl Jghj
1) (2"”){ch efr}‘gaj eadf VoS ©  (A-19)

The X-coefficient or "9j" symbol, arising through consideration of
the coupling of four angular momenta, 1is given in terms of "6j" symbols

by
3y 3 33 Judid 313324
5. 5. Job = T (L18ogaY (DA TN L SR ) L (a-20)
3 Yy Y3y g J3yd 9 J29 Joy 9y dy

Jy13d24d

A-3. SOME USEFUL RELATIONS

It is useful to represent the dot and cross products of two vectors
in the form '

(A - B) = E (-)*A B_, (A-21)
(A xB) =-/2i DG (10> A, B (A-22)
where
Ay = A,,
A, =-IE(Ax+iAy),
A, = -}E (A - 1 A). (A-23)
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We 1ist below some useful relations involving the manipulation of
certain spherical tensors. First of all, a third spherical tensor can be
formed from two others:

Cera,Ckoq,™ L <ka(an)ka(az) [k(a)><ky(0)kz(0) [K(0)> Cyo - (A-24)

kq q

Second, a relation for the gradient of a radial function multiplied by a
spherical tensor can be obtained:

(grad)uckqf(r) = Efl(“)"(q”"'(q"“)><1(°)"(°)|k'(°)>ck',q+u
[—+—f(r)[k(k+1)(2k+1)] W(klk'l; k1)].  (A-25)

If f(r) = rk. equation (A-25) becomes

(g\r'ad)ucqu‘k=(2k+1)<1(u)k(q)|k-1(q+u)><1(0)k(0)|k-1(0)>(‘,k_1,q_,_urk'1

=-[k(2k+1) P21 () k(Q) [K-1(@#0)C Ly au,r (A-26)

If f(r) = }'k'1, then equation (A-25) becomes

C
(grad) | F(r)Cyq = -[(k-1)(2k+1) TE1(w)k(a) [ kel (qru)> 5702 . (A-27)
Y'




APPENDIX B.--IRREDUCIBLE TENSORS

Irreducible tensor operators are defined as operators that have the
same transformation properties under rotation as do the spherical har-
monics. To express this definition concicely, we write the commutation
relations of the spherical tensor T, and the components of the angular
momentum kq

[9,s Teql = "Rk +1] <k(a) 1(u)[k(q + u)> T (B-1)

k9q+u 4

where g, =, J; = - 142 (9, + i J)s and J_= Wz (9, - i Jy) -
Equation (B-1) defines Tk as an irreducible tensor operator of rank k
and projection q. q

The power of the irreducible tensor formalism lies in the ability to
use the Wigner-Eckart (W-E) theorem to calculate matrix elements:

QM [T 9M> = <I(M) Kk(Q)|3" (M')><d" [T, [ 19> . (8-2)

This important theorem states that the dependence of the matrix element
on the left of equation (B-2) on the projection q and the azimuthal
uantum numbers M and M' is contained entirely in the Clebsch-Gordan
C-G) coefficient. The so-called "reduced matrix element," <J'||Tk||J>,
depends only on J', J, and k.

If Tqul and Uk2q2 are irreducible tensors, then so is the quantity

Yo " I Thaay Ykasgeg, katankela-an)fka)> - (8-3)
This irreducibility may be shown by using the W-E theorem and the
recoupling schemes of appendix A.

We now proceed to calculate reduced matrix elements of two types of
irreducible tensors in a basis |JMLS>: a tensor in L-space and a tensor
in J-space.

For a tensor 13_ L-space (that 1is, a quantity which satisfies
equation (B-1) with J replaced by L), we have, by the W-E theorem,
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<O'M'L'S'[ T, [OMLS> = ) <L (M )S(M-M )| I(M)>

MM

X

<L (M) (MM Y197 (H) >0 Sy e omy

<L(M)k(a) L' (M *)><L[[T, | IL> , (B-4)

x

where we have used the expansion

|IMLS> = %L <L(M)S(M-M ) [I(M)>[LM, S, M-M > . (B-5)

If we eliminate the sum over M| by the Kronecker delta, recouple the
last two C-G coefficients, and sum over ML, we arrive at the result

QLS [T, |9Ls> = [(2L'+1)(20+1)7% W(KL'JS' LJ') <L'[[T | IL> . (B-6)

For a tensor in J-space, we use the form of equation (B-3), where
;kl 1 operates in L-space, and Uk2q2 operates in S-space. Therefore, we
av

QML [V [IMLS> = T <L (M )S(M-M ) [3(M)>

MLMqu
« <L (M)S" (MM ) 19" (') ><ky (a1 DKz (a-01) [ K(a)>
<L(M Dy (ay) L (M )><S(M-M Jkp(a-01) S (M M )>
LTy s 1Y [Is> (8-7)

X

X

If we recouple the second and fifth C-G coefficients and the third and
fourth C-G coefficients and sum over q;, we obtain




¢ ey
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YUY ' . '+S'-J ' +kq+ |
<D'MIL'S' [V [IMLS>=<L | [T, | [L><S 1Yy, [15>(=)F 570 Hhatke ‘
-g-ML ;5
xJ (=) FL(2L'+1)(25'+1)T3(2g+1)W(Sk,d'L";S'g)
M 9
L

x W(LL'kky3kyg)<S(M-M )g(M +q) |9'(M')>

x <L(-ML)9(ML+Q)lk(Q)><L(ML)S(M~ML)IJ(M)> . (B-8)

If we further recouple the first and second C-G coefficients in
equation (B-8) and sum over ML and q using equation (A-20) (app A), we
arrive at the final result:

L § 4
LS gl ks = [(2L'+1)(zs'+1)(2s+1)(2k+1)]’5{t} %5

x <L T HLo<S' | [U, | ]S> (8-9)
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